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ABSTRACT

A sixteen node shell element is developed using a matrix stabilization
scheme based on the Hellinger-Reissner principle with independent strain.
Initially the assumed independent strain is divided into a lower order part and
a higher order part. The stiffness matrix corresponding to the lower order
assumed strain is equivalent to the stiffness matrix of the assumed displacement
model element with the reduced integration scheme. The spurious kinematic modes
of the element are suppressed by introducing a stabilization matrix associated
with a judiciously chosen set of highar order assumed strain fields. Numerical
results show that this element is free of locking even for very thin plates and

) shells.

INTRONDUCTION

Since the early days in the history of the finite element method, a great
deal of research effort has been directed to the finite element modeling of thin
shell structures. Among all existing approaches, the degenerate solid shell
element concept [Ahmad, Irons and Zienkiewicz (1970)] appears to be the most
convenient for the description of the arbitrary shell geometry and the kinema-
tics of deformation. However, it is well known that the degenerate solid shell
elements exhibit a serious drawback unless special care is taken. Tnis phenone-
non, known as locking, arises from the overstiffening effect due to the con-
ditions of zero inplane strain and zero transverse shear strain when the shell
thickness becomes small [Lee and Pian (1978)].

A very popular way of alleviating locking has been to utilize the reduced
or selective integration scheme [Zienkiewicz, Too and Taylor (1971); Pawsey and
Clough (1971); Hughes, Cohen and Haroun (1978); Pugh, Hinton and Zienkiewicz
(1978); Stolarski and Belytschko (1982)]. However, the reduced or selective

integration scheme has not been successful in eliminating the effect of locking
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completely., Even with the 2x2x2 point reduced integration, an eight node shell
element based on the assumed displacement finite element model still experiences
locking. On the other hand, the 2x2x2 point reduced integration rule applied
to a nine node element or the 3x3x2 point reduced integration rule applied to

a sixteen node element eliminates the effect of locking. However, they intro-
duce spurious kinematic modes which lead to unstable finite element models.

To improve the kinematic stability, we may employ selective integration schemes
to these elements in which a higher order integration rule is used for the
bending part. However, selective integration schemes cannot eliminate the
unstable spurious kinematic modes completely, In short, it is not easy to find
an appropriate reduced or selective integration rule which can eliminate both
locking and undesirable kinematic modes at the same time,

In order to suppress the spurious kinematic modes, we may add a stabiliza-
tion matrix to the element stiffness matrix evaluated by a reduced integration
rule [Belytschko, Ong and Liu (1984); Belytschko, Liu, Ong and Lam (1985)]. In
doing so, great care is needed to avoid reintroducing the effect of locking
through excessive stabilization. Recently, a rational method of generating a
stabilization matrix has been developed [Lee and Rhiu (1986)]. This method is
based on the Hellinger-Reissner principle including both independent strain and
displacement-dependent strain, The assumed independent strain is divided into a
lower order part and a higher order part. With a proper integration rule, the
lower order assumed strain leads to an element stiffness matrix equivalent to
that based on the assumed displacement model evaluated with the same integration
rule [Lee (1978); Malkus and Hughes (1978)]. A judiciously chosen higher order
independent strain field is used to generate a stabilization matrix. Following

this approach, a nine node element which is free of locking and undesirabe

spurious kinematic modes has been developed for the analysis of thin shell
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structures [Rhiu and Lee (1987); Rhiu (1985)]. '.

Encouraged by this success, we extend in this paper the new approach to the N

formulation of a sixteen node degenerate solid shell element. Since displacement {:

fields are assumed bicubic, the sixteen node element has the potential to repre- aﬁ

! sent shell hehavior with considerable accuracy. However, with the 4x4x2 point g?
integration, the sixteen node element based on the assumed displacement model ::

still suffers from locking, particularly for distorted or curved finite element %2

meshes. On the other hand, as mentioned previously, the element stiffness i’

matrix evaluated by the 3x3x2 point reduced integration rule has unstable Qj_

spurious kinematic modes. These spurious kinematic modes will be identified. %Ev

Then they will be suppressed by adding a stabilization matrix which is derived §£

through the use of appropriately assumed higher order independent strain fields. B

Finally, the performance of the present element will be tested by solving 3

example problems, i

-

GEOMETRY AND KINEMATICS o

2

Figure 1 shows the midsurface of a curved sixteen node shell element. In

‘o
L[]

—
»

order to describe the shell geometry and the kinematics of deformation, local

coordinates with components x, y and z are defined on the shell midsurface in ij,
addition to global coordinates with components X, Y and Z. The x, y and 2z axes :i

of the local coordinate system are parallel to the orthogonal unit vectors 21
3, and a5 respectively. The unit vectors 3, and 2, are tangential to the shell éEE
midsurface while 23 is nommal to the surface. The 3)» 3 and 24 vectors are .E:
given at each node as an input., In addition, they are defined at each integra- f
tion point in a manner which will be discussed later. %a
With the coordinate systems described above, the global position vector X of Ei
a generic material point can be expressed as ti
Xex v e s (1) |
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5
where X is the global position vector of a point located on the shell midsur- ]
)
£,
face, ¢ ;-33 is a vector drawn from the point on the midsurface to the generic :R;
material point, t is the shell thickness and the nondimensional coordinate g R
~
'
runs from -1 to 1. Assuming the shell undergoes small deformation, the displa- :E
cement vector U of the generic material point with respect to the global coor- ;k:
dinate system can be expressed as 7
I'l
= t :'.-".
W=l +cgbe (2)
NN
\".'
where >
b = ['9.2»9.1] (2a) (:
\'.'-
81 SN
5 = (zb) \:‘\v
~ e 5
2 .
%
t
In Eq. (2b), 6, and 8, represent small rotations of aj around the x and y axes ¥
™
.
respectively. In Eq. (2), the global displacement vector Y of the point on the tti
shell midsurface is related to the corresponding local displacement vector u o
with components u, v and w through a transformation matrix T such that ;
Y =Ty (3a) =
I-= [9.1.9.2.93] (3b) 3
Then introducing the isoparametric representation, Eqs. (1) and (2) can be ﬁ;_
expressed as Ej:‘
X= 1 Nlen) Xy +58 1 Nilean)ty ag (4) o
i=1 izl o
16 , 16 s
U= T N(EnTius + 56 1 N(en)ty by 8y (5) e
i=1 i=] oS
A
: : 2
where 50, ti» 23, Ijs ¥j» By, 8 are the values of X , t, 23, T, 4, B, 8 at node ?2::
S
i, and N, is the bicubic shape function in parent coordinates { and n. v
With the description of X and U in Eqs. (4) and (5), the displacement- Eﬁ%z




dependent strain vector defined with respect to the global coordinate system can
be expressed in terms of the vector of nodal degrees of freedom. Then, using

strain transformation, the strain vectorAE'in the local coordinate system is

written symbolically as

E - |-Exx Eyy Exy E,yz Ezrl (6)
= B(E.n,z) g,
where B(g,n,z) is the strain-displacement transformation matrix and the
element nodal degrees of freedom vector g, is expressed as:
T T
= Lgl 91, U2 2. seeeey UI6 ~16J (7)

FINITE ELEMENT FORMULATION

For the generation of our sixteen node shell element, we utilize the

Hellinger-Reissner functional "o expressed as follows:

=l ETCE-2E CE av-w (8)

where £ is the displacement-dependent local strain vector given in Eq. (6) and

E is the independent local strain vector such that

= T
3 I-Exx Eyy Exy Eyz szJ (3)

In the present formulation, the independent strain components are assumed
to be linear at most through shell thickness. In addition, in Eq. (8), W
represents the applied load term, V is the volume of shell and C is a 5x5

elastic coefficient matrix.

Following Lee and Rhiu (1986), initially the independent strain £ is divided

into two parts such that
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E=E +§&y (10)
where EL is the independent strain vector with lower order assumed polynomial
terms in £, n and E, is the higher order independent strain vector.

Substituting this expression into Eq. (8), the functional " becomes

me =T U - W (11)
where
_ T = 1.7 T
Ue'I(ELE E'_Q',.E.LC E-L) dv"{ngc ngV
+JEC (E-E) v (12)

and § indicates summation or assembly over all elements.

For a sixteen node element of flat rectangular geometry, the displacement-
dependent strain E is cubic at most in £ and n. If the lower order independent
strain gL is assumed to be biquadratic in £ and n, the first integrals in Eq.
(12) can be integrated exactly in £-n plane by the 3x3 point Gaussian integra-
tion rule. The remaining terms are integrated by the 4x4 point rule over £ and
n. Although these integration rules are determined based on the flat rec-
tangular element geometry, the same integration rules will be adopted for ele-
ments with arbitrary geometry. In g-direction, the two point integration rule
is used. In addition, the assumed lower order independent strain can be

expressed such that

18 18
EL . 121 N'(eo“oc) 51 '121 N1(Eoﬂo¢) 2(510'\1.C1)Se
= Ble,n,z) g, (13)
with
B =,E1 N.(£,n,8) B(E{,n;,25) (13a)
]:

In €Eq. (13), shape function iﬁ is biquadratic in £, n and linear in ¢ such that

'Wi = 1 at point 1 of the 3x3x2 lower order integration points and zero at other
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points, and E} is the value of'E at lower order integration point i. Then, for
the Tower order strains, it is possible to set
E -F (14)
at the 3x3x2 integration points.
Applying the adopted integration rules and introducing the equivalence

given in Eq. (14), Ug in Eq. (12) can be written as

1, T 1, T
Ve =}l E LB -} B g
+ [ B¢ (F-6) dv (15)

In the above expression, letters L and H under the integral signs represent the
Tower order integration (3x3x2 points) and the higher order integration (4x4x2
points) rules, respectively.

Based on the limitation principle [Fraejis de Veubeke (1965)], the polyno-
mial terms in the assumed strain Ey cannot be of higher order than cubic in g
and n. Then, with biquadratic £ , the term containing EL 1n the last integral
of Eq. (15) can be integrated by the 3x3x2 point integration rule. Noting this,

U_ can be rewritten as

e
1 T 1 T
Ve 'Z'ILELS -ngv"?fHEHQ Ey v
T . = T
+f BiCEa-f EC g W (16)

Rniu and Lee (1987) developed a nine node shell element using the expression
for U, equivalent to Eq. (16). For the present sixteen node shell element, the

expressions in Eq. (15) is used.

On the other hand, the higher order assumed strain is expressed as
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Ey = B(Esns2) g (18)
where P is the assumed strain shape function matrix which contain higher order
terms in £, n and a is the vector of higher order strain parameters. Note that
the P matrix is linear in Z.

Introducing Eqs. (6), (13) and (18) into Eq. (15), the functional xp in

Eq. (11) becomes

T T

T 1 T
]9k % te 8872 B2 gl (19)
where
K=/ B CF (20)
L
g -/ 2E (B-B) W 2
H
_ T
W= pTg p oav (22)
H
Xslneﬂ (23)

Setting G"R = 0 with respect to g results in the compatibility equation in

discretized form as follows:

2 =8 G g, (24)

for each element.

By introducing Eq. {24) into Eq. (19), mp can be written as

LI (%'91 Ke Qe - 92 Qe) (25)

In the above equation, the element stiffness matrix Ko is given as

!.(.e = BL + Ks (26)

where

P o n At e  a e
S AR Sl A S N A Y, o L R L PO o La
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The EL matrix is evaluated by the 3x3x2 point integration rule while the K
matrix associated with the higher order assumed strain is evaluated by the 4x4x2
point integration rule, Note that the K| matrix is in fact the same element
stiffness matrix derived from the conventional assumed displacement model based
on the principle of virtual work with the 3x3x2 point reduced integration rule,
The EL matrix has spurious kinematic modes, and these modes are suppressed
by adding a properly constructed 55 matrix. Thus, 55 plays the role of a sta-
bilization matrix.

To construct the element stiffness matrix, it is necessary to evaluate the B
matrix at both the higher order integration points and the lower order integra-
tion points. Alternately B at the lower order integration points can be inter-
polated from B evaluated at the higher order integration points as follows:

32
8 (&5, nj,24) =jzl N;(E5mia2y) BlEjunjat ;) (28)
where the subscripts i1 and j stand for the lower order integration points and
the higher order integration points respectively, and the shape function ij is
bicubic in £, n and linear in ¢ such that N, = 1 at the point j of the 4x4x2

J
higher order integration points and zero at other points,

CONTROL OF THE SPURIQUS KINEMATIC MODES

For an element of flat rectangular shape with sides along x = *1 and y = t1
lines, it is possible to determine the analytical expressions for the spurious
kinematic modes of the EL matrix by expressing the assumed u, v, w, 61 and 82 as

polynomial functions in x and y coordinates, For example, we may write

3y (29)

u = al + azx + eover alﬁx
and similarly for v, w, el and 8o, Then displacement-dependent strain vector

E'can be expressed from these assumed displacement fields. Now noting that

spurious kinematic modes of the 5L matrix do not produce strain, we set

Y ryrreassi
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(30}

at the 3x3x2 lower order integration points. This leads to a set of 72 homoge-

neous equations from which we can identify the following seven spurious kinema-

’ tic modes:
(1) us=-Cy (3x2 - 5x2_y2 + yz)
2 2 2 2 (316)
v=20_ x (x™ - 5x"y" + 3y")
? (2) 8, = Cg x (- %- + X2 - 5x2y2 + 3y2)
3 2 22 2 (31o)
6, = Csy (-3 + 3 - 6’y +y7)
(3) u=Cyxy (9 - 15x° - 15y + 25x°y%) (31c)
(4) v o= Cyoxy (9 - 15x7 - 15y% + 25x°yP) (31d)
(5) W= Cyxy (9 -15x° - 15y° + 26x%y%) (3le)
(6) 8y = Cg xy (9 - 15x% - 15y° + 25x°y?) (31f)
(7) 8, = C; xy (9 - 16x° - 1557 + 25x%y%) (31g)

where Cl’ Cz, seeey Ly are arbitrary constants. The modes given in Fqs. (31a)
and (31b) are incompatible. That is, they disappear for an assembly of only two
elements. However, the remaining modes are compatible and persist even after
assembling elements, resulting in an unstable finite element model. These
spurious kinematic modes are suppressed by introducing carefully chosen higher
order assumed strain fields as follows:

The displacement-dependent strain component corresponding to Eqs. (3la) to

(31g) are

= 3
Exx = - C1 (6xy - 10xy3) + C5 z2(6xy - 10xy”)
+Cy (9y - 45x%y - 15y° + 75x°y’)

+ €y z(9y - 45x%y - 15y° + 75x%y’) (32a)




L f;y =G (6xy - 10x3y) - Cg z(6xy -10x3y)
+Cy (9x - 16x° - 45xy” + 75x°y%)
- Cg z(9x - 15x° - 45xy? + 75x°y%) (320)
b By = Cp (9% - 15x° - a5xy? + 75x3y?)

+ Cq (9y - 45x7y - 15y° + 75x%y%)
+ C7 z(9x - 15x3 - 45xy2 + 75x3y2)

L - g 2(9y - #5x%y - 15y°+ 75x7y%) (32¢)
E}z = Cy (9x - 15x% - 45xy2 + 75x3y2)
- C (- %-x + 3. 5x3y2 + 3xy2)

# - Cg (9ny - 15x7y - 15xy° + 25x°y?) (32d)

E,x = Cq (9y - 45x2y - 15y3 + 75x2y3)
3
G (- 3y + 3y - 6y’ + )

+ €y (9xy - 15x°y - 15xy° + 25¢°y%) (32e)

Examining Fqs. (32a) to (32e), we realize that the spurious kinematic modes in

Eqs. (31a) to (31g) are suppressed for the following higher order assumed strain

fields:
b (B 0h = o x2y3 *ag zxzy3 +a, xy3 + ag 2xy’
(Eyy)H * a, xay2 + ag 2x3y?+ ag Jy + a0 23y
* (Egydy = 0 (33)
(EyZ)H ay xay2
) (EZX)H ay xz_y3

11




A
In Eq. (33), G1s Gy *°°°°° @)q are unknown coefficients, Alternately, noting 5'
* that the modes corresponding to C1 and Cg are incompatible, we may drop ay

ag, ag and a,, terms from Eq. (33). This leads to an assumed higher order }:

strain field with six coefficients and the resulting element stiffness matrix >

? has eight zero eigenvalues. However, when elements are assembled, the resulting Nt
finite element model is kinematically stable, r;

For an element with arbitrary geometry, we use Ezna, £3n2 terms etc. g;
» instead of x2y3, x3y2 terms etc, Since 52n3 and 53n2 are not symmetric with :;
respect to parent coordinates £ and n, the element stiffness matrix may be FQ

dependent on the choice of local coordinate systems used. If the local coor- EE

dinate system is chosen such that the 3, or x axis is parallel with the £ coor- ::

dinate, then the element stiffness matrix is not invariant when element geometry ;:

is nonrectangular, For example, consider the distorted elements with different ES
node numberings as shown in Fig. 2. Even though both elements have the same 23
geometry, we obtain two different element stiffness matrices. The local coor- i;

dinate system with x or 2 parallel with & has been used in Lee, Wong and Rhiu E‘

(1985) in conjunction with a nine node shell element. In spite of the lack of é

invariance of the element stiffness matrices, this nine node shell element CS

showed excellent performance. This indicates that the invariance property is .

not absolutely necessary for a good finite element. However, in the present -

study, we enforce the invariance of element stiffness matrices by assigning a -3

particular local coordinate system for a given geometry of elment as follows ;;

? (Rhiu and Lee (1987)]: §-
If 50 denotes the position vector of the point located at € = n = ¢ = 0, we ;f

may define two unit vectros v, and y, at this point such that E:!

+ ;‘r-
ot

12 ':
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3, / 3%,
“Wew,/ |% (342)

X, ax,
Y2 3w I (34b)

The angle 6, between these two unit vectors is determined by the following

equation,

~

Cos 8 =y, v ¥, (35)

Then, if 8 is less than or equal to 90°, the unit vector a, in the x direction

of local coordinate system is chosen to be parallel to £ axis such that

Otherwise, a is parellel to n axis such that
aX X
~0 ~0
2 W/Tﬁ‘ (360)

With this choice of a;, we can easily determine the other two unit vectors

2, and 33, with a5 being normal to the shell midsurface. Note that, while

¥y and y, are determined at £ = n = ¢ = 0 point, the 3,, 3, and 3, vectors can be
computed at any point on the shell midsurface. In particular, a,, a, and a5 are

needed at the integration points.

With the local coordinate system defined as above, the higher order assumed

strains for the sixteen node shell element are chosen as follows:
EH =Pa (37)

where for the 10a version,
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[f, 0 ¢f; 0 0 0 f, 0 gf, O
0 91 0 €9 0 0 0 7] 0 137
P = 0o 0 0 O 0 O 0 O 0 0 (38a)
0 0 0 O 9 0 0 0 0 0
000 0 0 0 f, 0 0 0 O
T
a8 = Lay, ap, oeey ayp] (38b)
and for the 6a version,
Cf, 0 zf, 0 0 07
0 g, 0 zg 0 0
pP=|0 0 0 0 0 O (39a)
0 0 0 0 9 0
| 000 0 0 0 f
T
a = L_al, Qo sesey cGJ (39b)
In Eqs. (38a) and (39a), fl’ fo, 9y and g, are chosen as follows:
(1) if x or a, is parallel to £ as in Eq. (36a)
fl = £2n3, f, = en’ (40a)
9y = £'n%, g, = £'n (40b)
(2) if x or 3, is parallel to n as in Eq. (36b)
f, = &%, f, = £%n (41a)
g9; = £%n®, 9, * £n’ (41b)

NUMERICAL TESTS

In order to evaluate the performance of the present sixteen node element,
several numerical tests involving simple plates and shells were carried out.

For the purpose of identification, the present sixteen node element is called
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SHEL16, Whenever possible, the effectiveness of SHEL16 element is compared with
the DISP16 element based on the conventional displacement model with the 4x4x2
point integration rule, Most of the numerical results are presented in tabular
form so that they can be used for future reference., For the SHEL16 element, it
turns out that numerical results for the 6a assumed strain and the 10a assumed
strain are almost identical for the cases tested in this paper. Therefore only
the results for the 6a version is presented. All numerical examples were
calculated with double precision accuracy on the UNIVAC 1100/92 machine at the

University of Maryland, .

(a) A Simply Supported or Clamped Square Plate

Pla;e bending problems provide examples to investigate the effect of trans-
verse shear locking alone, A quarter of a square plate subjected to uniformly
distributed load p was modeled by uniform 1x1 and 2x2 meshes and distorted 2x2
and 4x4 meshes as shown in Figs. 3(a) to 3(c). Both simply supported and
clamped boundary conditions were considered,

Table 1 lists the computed nondimensional deflection at the centroid of the
plate. These values are normalized with respect to the analytical solution
based on the Kirchhoff thin plate theory [Timoshenko and Woinowski-Krieger
(1959)]. For the simply supported plate, both SHEL16 and DISPl6 el=ments give
numerical results very close to the analytical solutions for the uniform meshes.
For the distorted 2x2 mesh, the SHEL16 element does not suffer any transverse
shear locking over a wide range of L/t ratios while the NDISP16 element reveals a
slight effect of shear locking when the plate becomes very thin, For the
distorted 4x4 mesh, both elements give very accurate results, For the clamped
plate, the SHEL16 element gives very accurate and reliable numerical results
over a wide range of L/t ratios regardless of mesh distortion, However,

for the distorted meshes, the performance of the DISP16 element deteriorates as

15
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the plate becomes thin., Even in this case, the 4x4 mesh shows very accurate :

# solution up to L/t = 10,000. ::
Table 2 shows nondimensional bending moments Mx/pL2 per unit length eva- S’

luated at integration point E and nondimensional shear forces Qx/pL per unit R

# length evaluated at integration point F. Note that the SHEL16 element solu- R
tions are totally insensitive to the wide range of L/t ratios considered here. E‘
Table 2 also includes analytical solutions obtained at corner points C and D. Eﬁ
L They are listed to check the order of magnitude of numerical solutions, 4
R
(b) A Pinched Cylindrical Shell }“
L As a deep shell example, a cylindrical shell loaded at two opposite points E&
as shown in Fig. 4 was tested. Both diaphragmed and fixed edge conditions were 4
considered. Due to symmetry in geometry and loading, only one octant of the {E

shell was modeled by 3x4, 4x5 and 5x6 meshes as shown in Figs. 5(a)-(c). In ES

addition, as shown in Fig, 5(d), an irregular mesh designated as 5x6I was also !
considered. Note that the meshes illustrated in Figs. 5(a)-(d) are on the :Ef

stretched plane of the octant ABCD of the shell. Moreover, in order to describe E

more accurately the complex shell behavior in the region near the load point C, .

fine meshes are used along lines BC and CD. Ei
Table 3 lists the nondimensional displacements at various points on the iEﬂ

diaphragmed shell for R/t = 100, 300 and 500. They are compared with the analy- - S

tical solutions given by Flligge (1962). The analytical solution is based on a fi

shell theory which neglects the effect of transverse shear deformation, Table 3 ﬁg

also includes numerical results obtained by the DISPl6 element with the 5x6 z;

mesh, For the models with SHEL16 elements, the solutions get closer to the ana~ E;

lytical solutions as the number of elements increases. It is noteworthy that if
the solutions for the distorted 5x61 mesh are very close to that for the regular Ti'

5x6 mesh. On the other hand, the DISP16 element shows signs of locking as the ?3

solutions deteriorate with increasing R/t ratios. Even for R/t = 100, the 5x6 &é
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mesh solution with the NDISP16 element is worse than the 3x4 mesh solution witn
the SHEL16 element,

Table 4 lists nondimensional deflections at the pinched point C of the shell
with fixed ends. A good convergence is observed as the finite element mode!
with the SHEL16 elements is refined., Also there is no significant discrepancy
between the 5x6 mesh and the 5x61 mesh, Figs. 6 and 7 show inplane force N1
and moment M2 per unit length along line BC for the 5x6 mesh with SHEL16 ele-

ments. An analytical solution for the fixed ends case is not available.

(c) A Hemispherical Shell

As a doubly curved shell example, a hemispherical shell subjected to con-
centrated loads as shown in Fig, 8 was considered. This problem exhibits pre-
dominantly bending behavior with very little inplane behavior. Due to symmetry
in geometry and loading, a quarter of the shell was modeled by 4 element, 9 ele-
ment, 16 element and 20 element meshes., The 4 element, 9 element and 16 element
meshes are created by dividing uniformly over the angles 6 and ¢. The 20 ele-
ment mesh is created from the 16 element mesh as shown in Fig., 8.

For convenience, a small region at point C was not included in the finite
element modeling. As a check, two different cases were tested. In one case, the
region within 6 = 0,5° was cut out while, in the other case, the region within 8
= 1° was excluded. The two cases gave the same result. In table 5 the com-
puted nondimensional deflection DHA/PR2 at point A is compared with the analyti-
cal solution reported by Morley and Morris (1978). Symbol D represents bending
rigidity. The analytical solution is based on the Rayleigh-Ritz method., For
R/t = 250, the solution for the 16 element model agrees exactly with the analy-
tical value of 0.185. Even the 10 element model shows only 0.05% error. On the
other hand, the DISP16 element suffers from locking, Table 5 also includes the

R/t = 500 case. Morley and Morris (1978) did not consider this case.

17

A B % W
-y W y

|

4
A

“d

A

o,

L)

e

1

- ¢ € o

et . _I.,'.‘I

. S
"ot slt.x‘._\\\,'u‘

Ay '.'
2 _X)

¥y Ty »
A

k!

b Yo TuTh T itk

LA AL AU

N %
o,

[



(d) A Toroidal Shell under Internal Pressure

A toroida) shell subjected to an internal pressure p was analyzed by the
SHEL16 element. Figures 9(a) and 9(b) show the geometry and material data. Tne
toroidal shell has both positive and negative curvatures along the meridional
angle. Due to the horizontal plane of symmetry and the axisymmetric loading, an
upper sector of shell with an angle of 8° was modeled with a row of 13 elements
and a row of 26 elements. The subtended angles of individual elements in the
13 element model are listed in Table 6. The 26 element model is obtained from
the 13 element model by dividing each element into two elements with equal sub-
tended angles. Numerical results for the 13 element model and the 26 elenent
model were almost the same. Therefore only the 13 element solutions are
reported here,

Table 7 shows nondimensional normal deflection (w/r) x 10° in comparison
with the numerical solution by Kalnins (1964) for r/t ratios of 20 and 200.
Kalnins' solution is a combination of the direct integration and the finite dif-
ference method. A very good agreement between the results of the SHEL16 element
and Kalnins' solution is observed. Table 7 also includes the SHEL16 element
solution for r/t = 1,000, This case was not considered by Kalnins, Figures 10
and 11 show the deflection and the bending stress (°ee)b at the top surface of
the shell along the meridional angle direction. An excellent agreement between
the two solutions is observed for r/t = 20 and 200, For r/t = 200, the distri-
bution of the membrane stress (o .). is shown in Fig. 12. Again the SHEL16 el<-
ment solution is almost identical to Kalnins‘ solution. The (oy,) /E curves for
r/t = 20 and 1,000 are very close to that for r/t = 200, Therefore, they are

not shown in Fig, 12 to avoid cluttering.

CONCLUSION

Results of numerical tests demonstrate that the present SHEL16 element
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o
can be used to provide reliable solutions for thin plates and shells regardless §¢
of distorted element geometries and clamped boundary conditions. In addition, ij
the SHEL16 element with the 10a version assumed strain is kinematically stable .
at element level while the SHEL16 element with the 6a version assumed strain is g:‘
kinematically unstable at element level but stable at global structural level, SE
Thus the stabilization scheme with a judiciously chosen set of higher order é.

N

assumed strain terms has successfully suppressed compatible kinematic modes

without reintroducing the locking effect. Finally, the present SHEL16 element

[ A
"“.'\\‘r‘r

can be used to generate benchmark solutions for testing the performance of other

‘

shell elements.
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Table 1. Maximum nondimensional deflection at the centroid of the
square plate under uniform pressure
L/t
Plate Mesh Element 2 3 " s
10 10 10 10
Uniform:
1x1 SHEL16 | 1.0000 0.9995 0.9995 0.9995
DISP16 | 1.0153 1.0150 1.0150 1.0150
2x2 SHEL16 | 1.0005 1.0000 1.0000 1.0000
Simply DISP16 | 1.0012 1.0007 1.0007 1.0007
Distorted:
Supported 2x2 SHEL16 | 1.0007 1.0007 1.0005 1.0005
pIsSPi6é | 1.0015 0.9956 0.9542 0.9380
4x4 SHEL16 | 1.0005 1.0002 1.0002 1.0002
DISP16 | 1.0000 1.0002 1.0000 0.9906
Uniform:
1x1 SHEL16 | 0.9968 0.9945 0.9945 0.9945
DISP16 | 1.0482 1.0474 1.0474 1,0474
2x2 SHEL16 | 1.0024 1.0000 1.0000 1.0000
pDISP16 | 1.0016 1.0000 1.0000 1.0000
Clamped Distored:
2x2 SHEL16 | 1.0024 1.0000 0.9960 0.9960
DISP16 | 0.9945 0.9486 0.3007 0.0048
4x4 SHEL16 | 1.0024 1.0000 1.0000 0.9992
DISP16 | 1.0016 0.9992 0.9929 0.8632
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Table 2. Nondimensional bending moment and shear force of the
L square plate (SHEL16 element with uniform 2x2 mesh)

g ..~-..- PR

YN

Simply Supported Plate Clamped Plate N

# (MX ) MX )
— ) 2 N

: > (%E)F (5 (%[’})F .
pL pL .

102 0.0476 0.310 0.0226  -0.404 =
10° 0.0476 0.310 0.0226  -0.404 N
10" 0.0476  0.310 0.0226  -0.404 =z
10° 0.0476 0.310 0.0226  -0.404 o
1 ] (M" ) (Q") (Mx ) :
Analytica — — —_ )
pL2 C pL’D pLz C :24

0.0479 0.338 0.0231 o

2

.‘.l.

:l'

\'

23 i

Pada e R

e ¥ ~ Nt a" a” PR
DY - . " - BT LN e T e e T Tt it e e
Ay . . - » e, s e e e T, e T ‘e R T DO
K . R

e 0 e




e
ot
)
=t
K W
1)
2
Iy
)
Table 3, Nondimensional displacements for the -.‘-_
pinched cylinder with diaphragmed ends e
W
Etw Etw Etu
% Element Mesh - ¢ - B - D j?,
P p P '_-:‘
o
oS
» 3x4 165.3 0.6776 4.102 ey
SHEL16 4x5 166.1 0.5218 4,113 <
56 166.3 0.4770 4.113 ]
5x61 166.3 0.4718 4,113 -
100 N
| DISP16 5x6 159.1 1.497 4,087 :
Analytical 164.3 0.4693 4.114 » 8
3x4 636.3 12.52 9.778
L SHEL16 8x5 642.3 12.52 9.785
56 646.9 12.22 9.853 :
5x61 646.5 12,32 9,853 -
300
DISP16 56 531.1 21.31 9,397 '
Analytical 647.3 9.867 i
’ .
3x4 1172.2 10.60 14.46 =
SHEL16 ax5 1200.9 10.23 14.45 L
5x6 1212.0 13.47 14.55 <
5x61 1210.2 13.21 14.53 %
500 {
DISP16 56 847.6 5.904 13.32 -
Analytical 1223.4 14.67 =
=
LY
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Table 4. Nondimensional deflection -Etw./P at the load point C
of the pinched cylindrical shell with fixed erds

R/t
Mesh 100 300 500
3x4 137.2 511.1 930.9
4x5 137.9 518.5 961.5
5x6 138.2 521.6 969.2
5x61 138.2 521.2 967.4

25




R/t Element 4 9 16 20
SHEL16 0.174 0.183 0.185 -

250
DISP16 - 0.113 0.160 -
SHEL16 0.158 0.176 0.182 0,182

500
DISPl6 - 0.055 0.123 0.139

26
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Table 5. Nondimensional deflection
of the hemispherical shell

-Dw,/PR? at the point A

No. of elements
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Table 6.

Meridional subtended angle of the elements for the toroidal shell

v gt ‘gt gt W 1 - (IRIY] U 1 Y Uw OW o

NPBFRA AL

element

no. 1 2 3 5 6

20 20 20 11 10 7

4

A8
(degrees)

7 8 9 10 11 12 13 It

4 7 10 11 20 20 20
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Table 7. Nondimensional deflections (w/r) x 10° of the toroidal shell

8 r/t = 20 r/t = 200 r/t = 1000

(degrees) SHEL16 Kalnins SHEL16 Kalnins SHEL16

0 0.1034 0.103 0.1038 0.100 0.1034

81 4.2119 4.208 5.1423 5.151 5.2911

’ 99 3.4668 3.467 3.2952 3.297 2.8179
140 1.2513 1.249 1.3038 1.298 1.3273
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Figure 1 A sixteen node shell element
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Figure 3(a) A square plate: 2x2 uniform mesh
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Figure 3(b) A square plate: 2x2 distorted mesh
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Figure 3(c)

A square plate: 4x4 distorted mesh
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Figure 5(a) Finite element models for cylindrical shell: 3x4 mesh
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Figure 5(b) Finite element models for cylindrical shell: 4x5 mesh
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Finite element models for cylindrical shell: 5x6 mesh

37

AR o S T '. NS e T e L ".-\.J-.'. AT T
OW . v g ¥

..’ '{ .1' o< 'A‘
2, 4,

5.
-,'
»

Ny
"4

.,

’ e .
»

v s
“oe
v s

v'{.'- o

(e
)
L 2



N
S

.
15

‘l $l1'.

<, r
Ll

A
%
£

vy s ARl
AR AARIN,

Ah AN A5,

¢

A B

P
- ‘
Y }&-'

P

Figure 5(d) Finite element models for cylindrical shell: 5x61 mesh
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Figure 8 Finite element mesh for one quarter of the hemispherical shell
subjected to concentrated loads
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